Impedance Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot

نویسندگان

  • Chi Zhang
  • Jiwei Hu
  • Qingsong Ai
  • Wei Meng
  • Quan Liu
چکیده

Pneumatic muscle is a new type of flexible actuator with advantages in terms of light weight, large output power/weight ratio, good security, low price and clean. In this paper, an ankle rehabilitation robot with two degrees of freedom driven by pneumatic muscle is studied. The force control method with an impedance controller in outer loop and a position inner loop is proposed. The demand of rehabilitation torque is ensured through tracking forces of three pneumatic muscle actuators. In the simulation, the constant force and variable force are tracked with error less than 10N. In the experiment, the force control method also achieved satisfactory results, which provides a good support for the application of the robot in the ankle rehabilitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

This is an author produced version of Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123047/

—Pneumatic muscles (PMs)-driven robots become more and more popular in medical and rehabilitation field as the actuators are intrinsically complaint and thus are safer for patients than traditional rigid robots. This paper proposes a new compliance adaptation method of a soft ankle rehabilitation robot that is driven by four pneumatic muscles enabling three rotational movement degrees of freedo...

متن کامل

Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot

A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibil...

متن کامل

Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance con...

متن کامل

Variable Impedance Control for Rehabilitation Robot using Interval Type-2 Fuzzy Logic

In this study, a novel variable impedance control for a lower-limb rehabilitation robotic system using voltage control strategy is presented. The majority of existing control approaches are based on control torque strategy, which require the knowledge of robot dynamics as well as dynamic of patients. This requires the controller to overcome complex problems such as uncertainties and nonlinearit...

متن کامل

Multi-criteria Optimal Design of Cable Driven Ankle Rehabilitation Robot

An ankle rehabilitation robot has been conceptualized and designed to realize the range of motion, muscle strengthening and proprioception training exercises for ankle joint. The robotic device is intended to help patients and therapists in their cooperative efforts for the treatment of impaired ankle joint as a result of injury or stroke. After analyzing the ankle joint anatomy and its motions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017